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Abstract

1 Introduction

One defines, following Aczel [1], [2] and Hurschewitz-Maggesi [3, p.228] a binding arity as a finite
sequence (or list) of natural numbers. Let N* be the set of binding arities. A binding signature is
a pair ¥ = (Op, Ar : Op — N*) where Op is a set.

For any binding signature ¥ and any Grothendieck universe U we will constructs a monad Ry on
the category of U-sets such that Ry (X) is the set of a-equivalence classes of expressions with free
variables from X. First some preliminaries.

2 Preliminaries

Let U be a Grothendieck universe. Let C' be a category in U.

Consider the following structure that is called a Kleisli triple in [4].
Definition 2.1 [205.11.14.defl] A Kleisli triple on C is a collection of data of the form:

1. a mapping R : Ob(C) — Ob(C),
2. for each X in C' a morphism n(X): X — R(X),
3. for each X, Y in C and f: X — R(Y) a morphism p(f): R(X) — R(Y),

such that the following conditions hold:

1. for any X € C, p(n(X)) = Idg(x),
2. for any f: X — R(Y), n(X) o p(f) = [,
3. forany f: X - R(Y), g — R(Z),

p(f) e p(g) = p(foplg))

It turns out that Kleisli triples are equivalent to monads see, e.g., [3, p.219]. We want to have a
precise statement of this equivalence.
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Problem 2.2 [2015.11.14.probl/ To construct a function MK from monads on C to Kleisli
triples on C.

Construction 2.3 [2015.11.14.constrl/Given a monad R = (R, 7, 1) we define the correspond-
ing Kleisli triple as the triple (Row, 7, park (r)) Where

Pk ®R)(f) = Ryor(f) o p(Y).

Verification of the equations is simple.

Problem 2.4 [2015.11.14.prob2/ To construct a function KM from Kleisli triples on C' to mon-
ads on C.

Construction 2.5 [2015.11.14.constr2/Let R = (Rop, 7, p) be a Kleisli triple on C. To define
the functor underlying the corresponding monad we take Ro, = Rop and define Ry, by the rule

Ryror(f) = p(f on(Y))

verification of functor axioms is simple.
To define n of the monad we set it equal to the i of the Kleisli triple.

To define u we set
w(X) = pldpy,(x))

Verification of the equations that form the axioms of a monad is simple.

Let Monads be the set of monads on a category C that lies in a Grothendieck universe U and let
KTriples be the set of Kleisli triples in the same category.

Lemma 2.6 [2015.11.14.11/ One has
MK o KM = Idyjonads

KM o MK = IdgTrriples
Proof: Given a monad R = (Rop, 1, 1) on C' we have for KM (MK (R)):
1. KM(MK(R))o» = MK(R)op = Rop,
2. for a morphism f: X — Y we have
KM(MK(R))mor(f) = prrr(r) (fonvkr)(Y)) = Ryror(fonr(Y))opr(Y) = fonr(Y)our(Y) = foldy = f
Since two monads are equal when the underlying functors are equal we conclude that
KM(MK(R))=R

Given a Kleisli triple R = (Rop, 1, p) we have for MK (KM (R)):

1. KM(MK(R))o» = Row,



2. for a morphism f: X — R(Y) we have
pur(EM®R) () = KM®R)yvor(foprmm)(Y) = pr(fonr(Y))op(Idr,,x)) = p(fonr(Y)op(Idr,,(x))) = 4

Since two Kleisli triples are equal when the corresponding functions on objects and the p function
are equal we conclude that M K(KM(R)) = Id.

Lemma shows that (KM, MK) defines a pair of mutually inverse bijections between the sets
of monads on C' and Kleisli triples on C' for any Grothendieck universe U and any category C
in U. It also has its version in the UniMath language where it establishes the same fact for any
type-theoretic universe U and monads and Kleisli triples on any pre-category C.

3 Monad defined by a binding signature

One construct a monad corresponding to a binding signature without any mention of syntactic
expressions. To do it one proceeds as follows.

Problem 3.1 [2015.11.22.probl/ Let R = (R, n,bind) be a monad on a category C and A an
object of C. Assume in addition that a coproduct (X [[A, 111 : X — X [[A,iia: A — X][A) is
specified from each X. To construct a Kleisli triple structure (n'y,bind/y) on the function R’y from
Ob(C) to itself of the form X — X ] A.

Construction 3.2 [2015.11.22.constrl] Define 7/,(X) : X — R(X][[A) as the composition
n(X)oR(ii1). For f: X — R(Y [[ A) define bind'y : R(X [T A) — R(Y [] A) as bind(coprod(f,iigo
n(Y 11 A4)))-

4 Expressions over a binding signature

Given a binding signature ¥ = (Op, Ar) and a set Var one defines the set of linear expressions
over Y with the names of variables from Var as the set of strings of symbols exp generated by the
grammar in the BN-normal form of the form

[2015.11.15.eqllexp = Var|(|opcopop(Var. . ... Var.exp,...,Var..... Var.exp)) (1)

where the number of occurrences of Var at the i-th argument of op is the number at the i-th
position of Ar(op). For example, for the signature Agy = ({A, ap}, {\ = (1),ap — (0,0)) the
grammar will consists of the line

exp ::= Var|\(Var.exp)|ap(exp, exp)
and for the signature Iy, = ({II}, {Il — (0,1)}) of the line
exp ::= Var|ll(exp, Var.exp)

The set exp of expressions (strings) generated by the grammar is the smallest set of strings that
contains elements of Var as well as strings obtained by substituting elements of Var instead of Var
and the elements of exp instead of exp in the strings op(Var..... Var.exp,...,Var..... Var.exp)
for each op € Op and the numbers of Var’s in front of the i-th exp equals to the i-th number in



Ar(op). Let us denote the set of strings corresponding to the signature > and the set of names
of variables Var by LExzp(X,Var). Then, for example, LExp(A,N) contains strings such as 1,
A(1.A(1.1)) and ap(1,2) and does not contain the string A(1,2).

Consider another set defined by a pair (Var,X). Elements of this set are planar rooted labelled
trees

Problem 4.1 [2015.11.15.probl/ To construct a bijection from the set LExp(X, Var) to the set
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